
1

Toward A Reinforcement Learning-based Rectilinear
Macro Placement under Human Constraints
Tuyen P. Le, Hieu T. Nguyen, SeungyeolBaek, TaeyounKim, JungwooLee (AgileSoDACompany)

SeongjungKim, HyunjinKim, MisuJung, DaehoonKim, SeokyongLee (AsiclandCompany)

Daewoo Choi (HankukUniversity of Foreign Studies)

2

Background and Motivation01

Methodology02

Experimental Results03

Outline

Conclusions04

3

Macro placement is a critical phase in chip design

Semiconductor Design Process

Months

Frontend

Backend

Production

System Specification

Functional Design

Logic Design

Circuit Design

Physical Design

Layout Verification

Fabrication & Testing
Tim

e t
o

Clos
ur

e

Number of macros / design size

N
u
m

b
e
r
o
f

It
e
ra

ti
o
n
s

Human designers repeat the placement to get optimal result

z

Routing

Macro
Placement

Initial
Floor planning

z

Routing

Macro
Placement

Initial
Floor planning

z

Routing

Macro
Placement

Initial
Floor planning

Time consuming task

Background and Motivation

4

This method is a chip placement approach that has the ability to generalize, meaning that it can leverage what it has learned while placing previous netlists to generate
better placements for new unseen netlists.

Google’s Nature Paper: Deep Reinforcement Learning-based Macro Placement

Background and Motivation

5

Motivation

Macro placement becomes more intricate

when involving general rectilinear macros

and layout areas

Dealing with rectilinear macros and layout areas. Reduce training resources

Macro placement that incorporates

human-like constraints, such as design

hierarchy and peripheral bias, has the

potential to significantly reduce the

amount of additional manual labor

required from designers.

Human-like constraints

Background and Motivation

We want to constrain training resource

utilization to typical configurations

- 01 x A5000 GPU (24GB)

- 01 x 64vCPUs

Training resources from Google Circuit Training

6

Our Efforts

We propose enhancements to CT-based macro placement including fine-tuning placement to account for human-like constraints

Placing macros based on design hierarchy

Placing macros at the periphery

We present methods to unify macro placement using macros and layout areas for general rectilinear shapes

To the best of our knowledge, this is the first work dealing with rectilinear layout areas and macro shapes using RL.

Enhancements on Google’s CT

Rectilinear macros and layout areas

RL model Enhancement

We propose an enhanced RL model and demonstrate that our RL-based placer can use fewer resources

▪ RL model still achieves competitive PPA metrics

Background and Motivation

7

Our Methodology

8

Methodology

Methodology

Grouping
Engine

RL-Based
Placement Engine

SA-Based
Post-Placement

Engine

Our framework consists of three distinct engines designed to optimize
the processes of standard cell and macro grouping, macro placement,
and post-processing placement:

The grouping engine groups millions of standard cells into several
clusters and classifies all the macros into groups based on the
design hierarchy

The RL-based placement engine receives input from the grouping
engine and produces near-final placements. This engine uses
methods to handle rectilinear macros and layout areas, and to
satisfy constraints about the design hierarchy, and peripheral bias

The SA-based post-placement engine fine tunes the results
generated by the RL placement engine for better pin accessibility,
and dead-space minimization.

9

Grouping Macros

Methodology

Grouping macros can be guided by human or automatically inferred from the netlist (as we did not have access to the original RTL).

• Grouping macros based on human when
human guidance is possible.

When human guidance is not possible, we
propose an alternative method which analyzes
the names of all macros in the netlist

Recursive search procedure is
implemented at each depth level of the
tree.

If a node at a given depth level has
more than one child, it is considered a
group

Otherwise, the search continues to
deeper depth levels

A

B C D E

Depth 0

Root

F G H I K

M N O

Depth 1

Depth 2

Depth 3P Q
….

Depth N

Macro name: A/B/G/N

Sub-string
as

Group name

An example of tree data structure of macro names

10

Rectilinear Macros and Layout Handling

Methodology

We propose two algorithms for handling the placement of rectilinear macros, allowing the use of a grid-based masking algorithm (next slide) to work with “primitive”, i.e.
rectangular, blocks and maximize the use of the layout area.

• The first algorithm identifies non-placeable
areas

The second algorithm decomposes each
rectilinear shape (non-placeable areas and
rectilinear macros) into multiple rectangles

Rectilinear macros and layout handling

11

Masking Control Algorithm

Methodology

We control the position mask to ensure that the currently placed macro adheres to the design hierarchy and periphery bias

• If the macro is the first from its group:

• the position mask is the boundary mask
(𝑀𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦), which allows the macro to be placed

only by the closest peripheral grid cells.

Beginning with the second macro of a group:

The algorithm restricts the placeable grid cells to
be in close proximity to macros from the same
group that have already been placed

An illustration of the masking control algorithm.

12

Neural network model

Methodology

Our proposal incorporates additional information that significantly enriches the macro and design features. Furthermore, as an additional advancement, we upgrade our
model to a two-head policy.

• Additional information:

group index

pin side

corner list

Two-head policy:

macro position

macro orientation

13

Reward function

Methodology

Our reward function R is defined as a negative weighted sum of four proxy costs:

𝐶𝑊: the wirelength cost is approximated as the normalized half-perimeter wirelength (HPWL)

𝐶𝐷 : the density cost is approximated as the average density of the densest 10% of grid cells

𝐶𝐶 : the congestion cost is approximated as the average of the top 5% most congested grid cells

𝐶𝐻 : the hierarchy cost is to encourage closeness between macros in the same design hierarchy

Effect of hierarchy cost

Euclidean
distance

Sum width of
two macro

Sum height
of two macro

Number of
groups

Number of
macro in
group g

14

Simulated Annealing-based Post Placement Engine

Methodology

SA-based post placement is aim to achieve human-quality placement in terms of pin accessibility and dead-space minimization.

• Pin Constraints

• Orient the pins of edge macros
inward.

• Maintain spacing between pins
and other macros.

• Macro Action : Shift

• Push macros towards
the edge to reduce
dead space.

• Macro Action : Flip

• Flip or rotate macros
to minimize wirelength.

• Macro Action : Swap

• Modify macros of the
same shape within the
same group to reduce
costs.

15

Experiments

16

Evaluation designs, flows, and settings

Designs Flows Settings

We evaluate the framework using three netlists of

Ariane CPU provided by [2] (Ariane-GCT), [10]

(Ariane-TILOS), and a version we generated using

NanGate45 standard-cell library (NG45)

Experimental Results

[2] Circuit Training. https://github.com/google_research/circuit_training

[10] C. Cheng, A. Kahng, S. Kundu, et al. 2023. Assessment of Reinforcement Learning for Macro Placement. In Proc. ISPD. 158–166.

Ariane-GCT Ariane-TILOS Ariane-OURS

Infrastructure:

A server with a 64-thread CPU, and an

A5000 GPU with 24 GB of memory

Each run uses 25 collectors

Settings:

We keep almost all training settings the

same as the settings from [2] and [10].

The cost weights 𝛼, 𝛽, 𝛾, and ω were set

to 5.0, 1.0, 0.5, and 0.1

We select the grid size (𝑁𝑟 and 𝑁𝑐)

relative to the chip canvas so that the

smallest macro can fit inside a grid cell

With Ariane-GCT and Ariane-TILOS

With Ariane-OURS

CT
SA

OURS

1

Netlist
Proxy cost

CT, SA, OURS

1

Netlist

(LEF,

DEF, .v)

Protobuf

Netlist

Run
Grouping

Engine
OpenROAD

P&R metrics

P&R tool

2

4

3

Macro

placement

(RePlAce,

TritonMP,

Hier-RTLMP)

17

1.1 Evaluations Using Ariane-GCT and Ariane-TILOS netlist

Experimental Results

• Our method can produce placements that show better proxy cost than those published in [2] and [10]

• Our method has 8% and 16.7% improvement (compared to CT) on Ariane-GCT and Ariane-TILOS,
respectively

By adding hierarchy cost to the reward function:

• Our method has 8.6% and 12% improvement (compared to CT) on Ariane-GCT and Ariane-TILOS,
respectively

0

0.5

1

1.5

Ariane-GCT Ariane-TILOS

C
T
 C

o
st

CT SA Our

Comparison with published results in [2][10]

1.2

1.4

1.6

1.8

Ariane-GCT Ariane-TILOS

O
u
r

C
o
st

(w
it
h
 h

ie
ra

rc
h
y)

CT SA Our

[2] Circuit Training. https://github.com/google_research/circuit_training

[10] C. Cheng, A. Kahng, S. Kundu, et al. 2023. Assessment of Reinforcement Learning for Macro Placement. In Proc. ISPD. 158–166.

Comparison by adding hierarchy cost

1

1

1

2

2

2

18

1.2 Evaluation using Our Generated Ariane Netlist

Experimental Results

• In three out of four metrics, our framework has the best or second-best results
compared to other placers.

• Our placer shows similarities to HierRTLMP in term of placing macros based on
the design hierarchy, as well as similarities to both Hier-RTLMP and TritonMP in
placing macros on the periphery

19

2. Evaluation of Industrial Designs

Experimental Results

• We only applied reasonable efforts (no “benchmarking”), meaning we wanted to see if results
were comparable, and not to try to prove if any such approach could “beat” the others.

• Our placer achieved PPA results that are better than those obtained by the designers within a
few evaluations and are quite comparable to those achieved by the timing-driven placer from
the P&R tool

20

3. Evaluation of Shape Generalization (#1)

Experimental Results

100 random designs of Ariane-NG45 100 random designs of Ariane-ASAP7

• We create 100 random synthesized designs of
Ariane-NG45 (80 for training and 20 for testing)

• We create 100 random synthesized designs of
ASAP7 (for testing)

We restricted the macro shapes to L, J and T
patterns

We avoided modifying macro shapes on their IO
sides

21

The last experiment assessed the possible generalization of our model to designs containing rectilinear macros and areas.

3. Evaluation of Shape Generalization (#2)

Training on 80 synthesized Ariane-NG45 Testing

Testing on 20 synthesized Ariane-NG4501

The model is well trained
to fit rectilinear designs
from NG45

Experimental Results

#5 #6

#7 #8 #9 #10 #11 #12

#13 #14 #15 #16 #17 #18

#19 #20 #21 #22

...
#80

#1 #2 #3 #4

The model-generated
placements improved
outperforming the
random placements after
100K policy updates

Adapting from a pre-
trained model enabled
the model to converge
faster than training the
model on that design
from scratch

Testing on 100 synthesized Ariane-ASAP702

Adaptation03

22

4. Runtime Analysis

Experimental Results

• Our learning-based placer only needs a few minutes to obtain a
good placement (Inference Time)

• To generate a well-trained agent, we needs a few hours of
training

Resource GPU CPU

GCT 08 x A100s 20 x 96vCPUs

TILOS 08 x A100s 02 x 96vCPUs

OURS 01 x A5000 01 x 64vCPUs

Designs Inference
Time (h)

Training
Time (h)

A-GCT 0.1 14

A-TILOS 0.1 10

A-OURS 0.1 14

Runtime

Training Resources

• It’s worth noting that with the same amount of training time,
our placer consume fewer computing resources than other
placers

23

Conclusions

Placement solution respects crucial human-like constraints

Design hierarchy

Peripheral bias

This approach has the potential to generalize a learned model to various designs with rectilinear macros and areas.

Respects crucial human-like constraints

Generalization

Reduce Training Resources

We conducted on standard training machines.

This can drive the research in RL-based placement towards efficiency and affordability.

Conclusions

24

Demo page
https://anonymous.4open.science/r/rl4cad-AE0F

https://anonymous.4open.science/r/rl4cad-AE0F

25

Q & A

26

Thank you!

	Slide 1
	Slide 2: Outline
	Slide 3: Macro placement is a critical phase in chip design
	Slide 4: Google’s Nature Paper: Deep Reinforcement Learning-based Macro Placement
	Slide 5: Motivation
	Slide 6: Our Efforts
	Slide 7
	Slide 8: Methodology
	Slide 9: Grouping Macros
	Slide 10: Rectilinear Macros and Layout Handling
	Slide 11: Masking Control Algorithm
	Slide 12: Neural network model
	Slide 13: Reward function
	Slide 14: Simulated Annealing-based Post Placement Engine
	Slide 15
	Slide 16: Evaluation designs, flows, and settings
	Slide 17: 1.1 Evaluations Using Ariane-GCT and Ariane-TILOS netlist
	Slide 18: 1.2 Evaluation using Our Generated Ariane Netlist
	Slide 19: 2. Evaluation of Industrial Designs
	Slide 20: 3. Evaluation of Shape Generalization (#1)
	Slide 21: 3. Evaluation of Shape Generalization (#2)
	Slide 22: 4. Runtime Analysis
	Slide 23: Conclusions
	Slide 24
	Slide 25
	Slide 26

