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Background and Motivation

Macro placement is a critical phase in chip design
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Background and Motivation

Google’'s Nature Paper: Deep Reinforcement Learning-based Macro Placement

This method is a chip placement approach that has the ability to generalize, meaning that it can leverage what it has learned while placing previous netlists to generate
better placements for new unseen netlists.
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Background and Motivation

Motivation

Dealing with rectilinear macros and layout areas.

v Macro placement becomes more intricate
when involving general rectilinear macros
and layout areas

Human-like constraints

v Macro placement that incorporates

human-like constraints, such as design
hierarchy and peripheral bias, has the
potential to significantly reduce the
amount of additional manual labor
required from designers.

Reduce training resources

Training resources from Google Circuit Training

For the training we utilized the following servers and jobs:
* 1 Replay Buffer(Reverb)/Eval server 32vCPUs (n1-standard-32)
o 1 Replay Buffer(Reverb) job
o 1Eval job

e 20 Collect servers 96vCPUs (n1-standard-96)

o Each server running 25 collect jobs for a total of 500.
¢ 1 Training server: 8xV/100s (n1-standard-96)
o 1 Training job

v We want to constrain training resource
utilization to typical configurations
- 01 x A5000 GPU (24GB)
- 01 x 64vCPUs

Agite SoDA-



Background and Motivation

Our Efforts

Enhancements on Google’s CT

» We propose enhancements to CT-based macro placement including fine-tuning placement to account for human-like constraints
» Placing macros based on design hierarchy

» Placing macros at the periphery

Rectilinear macros and layout areas

» We present methods to unify macro placement using macros and layout areas for general rectilinear shapes

* To the best of our knowledge, this is the first work dealing with rectilinear layout areas and macro shapes using RL.

RL model Enhancement

* We propose an enhanced RL model and demonstrate that our RL-based placer can use fewer resources

RL model still achieves competitive PPA metrics

6 Agite SoDA-
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Methodology

Methodology
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Methodology

Grouping Macros

Grouping macros can be guided by human or automatically inferred from the netlist (as we did not have access to the original RTL).

* Grouping macros based on human when
human guidance is possible.

* When human guidance is not possible, we
propose an alternative method which analyzes
the names of all macros in the netlist

* Recursive search procedure is
implemented at each depth level of the
tree.

« If a node at a given depth level has
more than one child, it is considered a
group

« Otherwise, the search continues to
deeper depth levels

An example of tree data structure of macro names

Agite SoDA-



Methodology

Rectilinear Macros and Layout Handling

We propose two algorithms for handling the placement of rectilinear macros, allowing the use of a grid-based masking algorithm (next slide) to work with “primitive”, i.e.
rectangular, blocks and maximize the use of the layout area.

Rectilinear macro non-placeable areas
/
o I:l
I I o—0 o—0 + The first algorithm identifies non-placeable
S areas
st i .
1%t algorithm 2nd algorithm + The second algorithm decomposes each
rectilinear shape (non-placeable areas and
?‘? rectilinear macros) into multiple rectangles
!
? o .—F.. ?
® I o
2 algorithm

Rectilinear macros and layout handling
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Methodology

Masking Control Algorithm

We control the position mask to ensure that the currently placed macro adheres to the design hierarchy and periphery bias

Cl g?\ce Mboundary
1st | [ |
v 1/ . i |
|| | |

macro
|
L] I oL * If the macro is the first from its group:
]
- + the position mask is the boundary mask
— l (Mpoundary), Which allows the macro to be placed
| | only by the closest peripheral grid cells.
place . .
= | » Beginning with the second macro of a group:
‘ 2 + The algorithm restricts the placeable grid cells to
 acio be in close proximity to macros from the same
] P y
— group that have already been placed
]

An illustration of the masking control algorithm.

11 Agi&o&oDA»



Methodology

Neural network model

Our proposal incorporates additional information that significantly enriches the macro and design features. Furthermore, as an additional advancement, we upgrade our
model to a two-head policy.

" e i i Current
E NEEER i Edge DeConvNN i - Macro
N . . | Mask
Hel BN EREE Edge reduce _ Embedding !
2030 i i Embeddings | mean | i
............................... | L current :
i __ macro i
! Node index | | Embedding !
: Embeddings i i
‘Group Index | _:L" ry — (4 ! Masked position
i p'” Side . self __ Attention ! policy
i {Cornerlist | attention Embedding i (Categorical)
L 8 Cprrent Macro |ndex :
Features E Metadata i Orientation
L ) Pl Embedding | policy
. —_— FC »> 1
P | C — 1 ff (Categorical)
. . ! L | :
! Corner List | i + Value
e et ittt ittt ittt network
+ Additional information: + Two-head policy:
* group index * macro position
* pin side * macro orientation

« corner list

12 AWSODA*



Methodology

Reward function

Our reward function R is defined as a negative weighted sum of four proxy costs:

R =—(aCw + pCc + yCp + Cq)

* Cy: the wirelength cost is approximated as the normalized half-perimeter wirelength (HPWL)
* (Cp : the density cost is approximated as the average density of the densest 10% of grid cells
* C. : the congestion cost is approximated as the average of the top 5% most congested grid cells

* Cy : the hierarchy cost is to encourage closeness between macros in the same design hierarchy
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Methodology

Simulated Annealing-based Post Placement Engine

SA-based post placement is aim to achieve human-quality placement in terms of pin accessibility and dead-space minimization.

e Pin Constraints « Macro Action : Shift * Macro Action : Flip * Macro Action : Swap

+ Orient the pins of edge macros e Push macros towards * Flip or rotate macros * Modify macros of the
inward. the edge to reduce to minimize wirelength. same shape within the

+ Maintain spacing between pins dead space. zggs group to reduce

and other macros.
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Experimental Results

Evaluation designs, flows, and settings

T ST ST

= With Ariane-GCT and Ariane-TILOS

. Netlist information
Designs
Core & # =
Size Macros I0s Clusters
Ariane 356.592
133 1231 799
(GCT) 356,640
Ariane 1347.1
133 495 810
(TILOS) 1346.8
Ariane 14459
133 495 41
(OURS) 14448
LT ||||| IIIIIIIIII L]
IIIIIIIIIII’I TN || ﬂilll |=|=|H=
[T |}
T _

i i !I!I,

riane TILOS Ariane-OURS

Ariane-GCT |

» We evaluate the framework using three netlists of
Ariane CPU provided by [2] (Ariane-GCT), [10]
(Ariane-TILOS), and a version we generated using
NanGate45 standard-cell library (NG45)

Netlist CT
I > SA — Proxy cost
OURS
= With Ariane-OURS Netlist
—— (LEF, ——
DEF, v)
\ 4 &
Run
(1 Grouping OpenROAD | @
Engine
Protobuf Macro
Netlist_y placement
@ | cr,sA 0URS (RePlAce,
TritonMP,
Hier-RTLMP)
—»| P&R tool [«
P&R metrics

. Model Configuration
Designs Ori. Our # #
Grid Grid | Nodes Edges
Ariane
(GCT) 35x33 12x13 1200 10000
Ariane
23x28 23x10 1200 12000
(TILOS)
Arlane 25x10 200 1100
(OURS) | ~ *

* Infrastructure:
* A server with a 64-thread CPU, and an
A5000 GPU with 24 GB of memory
« Each run uses 25 collectors
« Settings:
* We keep almost all training settings the
same as the settings from [2] and [10].
« The cost weights «a, B8, vy, and w were set
to 5.0, 1.0, 0.5, and 0.1
* We select the grid size (Nr and Nc¢ )
relative to the chip canvas so that the
smallest macro can fit inside a grid cell

[2] Circuit Training. https://github.com/google_research/circuit_training
[10] C. Cheng, A. Kahng, S. Kundu, et al. 2023. Assessment of Reinforcement Learning for Ma(fgo Placement. In Proc. ISPD. 158-166.

Agite SoDA-



Experimental Results

1.1 Evaluations Using Ariane-GCT and Ariane-TILOS netlist

15 ° Our method can produce placements that show better proxy cost than those published in [2] and [10]
1% « Our method has 8% and 16.7% improvement (compared to CT) on Ariane-GCT and Ariane-TILOS,
S 1 respectively
b 0.5 I Q By adding hierarchy cost to the reward function:
0 « Our method has 8.6% and 12% improvement (compared to CT) on Ariane-GCT and Ariane-TILOS,
Ariane-GCT Ariane-TILOS respectively
mCT mSA = Our CT metrics (1) O
. Placer WL Den. Cont. Hier. CT Our Inference
o Comparison with published results in [2][10] Designs Cosl Cost Cost Cost Cost Cost time(h)
CT[2] 0.1013 0.5502 0.9174 - 1.1102 - -
[ CT(12x15) | 0.0886 | 05345 | 08852 | 22115 | - | 164ll | 002 |
Ariane | SA(yzx1s) | 0.0963 | 0.5057 | 0.8446 | 1.4281 - 1.5523 14
18 (GCT) Ourgyp 0.0973 0.5088 0.8507 1.0571 1.0315 1.5264 0.02
£’>“\ ' OurposT 0.0933 0.5070 0.8414 1.0565 | 1.0209 | 1.4997 0.1
+ © 16 CT[10] 0.1060 | 0.5280 | 1.0470 - 0.8932 - -
S S 14 | SA[10] | 0.0860 | 0.4990 | 0.8350 - 0.7533 - 12.5
s 2 Ariane | CTya3x10y | 0.0975 | 0.5860 | 0.7881 | 29580 | - [ 17635 | o002 ]
o £ 12 (TILOS) | SA(s3.10) | 0.1061 | 0.5038 | 0.7761 | 1.5988 - 1.5820 10
2 Ariane-GCT Ariane-TILOS Ourgy 0.1092 | 05121 | 0.7701 | 1.3207 | 0.7503 | 1.5752 0.02
BCT ESA mOur OurposT 0.1045 | 05156 | 0.7643 | 13211 | 0.7444 | 1.5522 0.1

o Comparison by adding hierarchy cost

[2] Circuit Training. https://github.com/google_research/circuit_training
[10] C. Cheng, A. Kahng, S. Kundu, et al. 2023. Assessment of Reinforcement Learning for Magro Placement. In Proc. ISPD. 158-166. Agite SoDA



Experimental Results

1.2 Evaluation using Our Generated Ariane Netlist

RePLAce TritonMP Hier-RTLMP

[T M 111
i Q HE |
L 1t
\ | il
Mammummn ||
HRRANAR ; L
| 1 f
f m 1
| A | | j
+ In three out of four metrics, our framework has the best or second-best results P&R Metrics (post-route)
compared to other placers. Designs Placer Area WHS TNS # Power | Proxy | Inference
N . . . = (Imnz} (ns) (ns) DRC (mW) cost time (h)
* Our placer shows similarities to HierRTLMP in term of placing macros based on —
the design hierarchy, as well as similarities to both Hier-RTLMP and TritonMP in CT(zsx10) | 12806 | -091 | -4833.9 ? 285 | 18570 0.02
olacing macros on the Seriphery SA(ss10y | 1.2850 | -0.93 | -5320.6 9 586 | 1.7879 14
Ariane RePLAce 1.2812 -1.04 -5423.7 9 584 1.7244 1
{OURS) TritonMP 1.2839 -0.89 -5068.2 9 586 1.9621 1
Hier-RTLMP | 1.2823 -0.84 -4632.2 7 586 1.6482
Our 1.2803 -0.86 -4731.0 [i] 586 1.5807 0.1

18 AWSODA*



Experimental Results

2. Evaluation of Industrial Designs

. # # # # # Recti. Recti.
Designs
Macro | Types 10s Cells Nets | Layout | Macros
icl 89 59 1125 1.5M 1.7M v
ic2 169 97 630 3.8M 4.3M v
ic3 94 21 2207 1.8M 1.8M v v
Layout Metrics
Designs | Placer Arezzt WNS TNS # Power Run
(mm®©) (ns) (ns) DRC (mW) | time(h)
Human | 0.4550 | -0.6201 -0.6201 2559 44.6 weeks
icl Comm | 0.4495 | -0.6044 | -0.6044 | 2491 46.8 0.5
Our 0.4548 | -0.6178 | -0.6178 2695 43.7 14
Human | 1.0331 | -0.0709 | -376.68 | 6619 62.6 weeks
ic2 Comm | 1.0256 | -0.0739 | -302.11 | 23088 58.5 12
Our 1.0206 | -0.0698 | -288.59 | 23542 59.8 28
Human | 5.7972 | -0.4193 | -1.4651 | 3924 284 weeks
ic3 Comm | 5.7965 | -0.4544 | -15.5075 | 5038 274 1.7
Our 5.7961 | -0.1402 | -0.5792 | 4313 269 14

« We only applied reasonable efforts (no “benchmarking”), meaning we wanted to see if results

were comparable, and not to try to prove if any such approach could "beat” the others.

the P&R tool

19

* Our placer achieved PPA results that are better than those obtained by the designers within a
few evaluations and are quite comparable to those achieved by the timing-driven placer from

Agite SoDA-




Experimental Results

3. Evaluation of Shape Generalization (#1)

L4 ,‘I ITh )
|1\\|li i ,‘H L
] pam i U
* We create 100 random synthesized designs of :
Ariane-NG45 (80 for training and 20 for testing) #341LE 7%H%l r1 J 1
* We create 100 random synthesized designs of r ’ . - L
ASAP7 (for testing) | ’%rlu - L
* We restricted the macro shapesto L, Jand T L |
patterns J?r'iq?? | I___| _
+ We avoided modifying macro shapes on their 10 ii | H L | : ‘ I
sides ” | | ] | | | } }
| |k
LI4TLEELAF 97 4
100 random designs of Ariane-NG45 100 random designs of Ariane-ASAP7
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Experimental Results

3. Evaluation of Shape Generalization (#2)

The last experiment assessed the possible generalization of our model to designs containing rectilinear macros and areas.

@ Testing on 20 synthesized Ariane-NG45

Training on 80 synthesized Ariane-NG45

. k ;
=k i [ M
h H | AR o il o = ] .il.
1 gm | Tt h 1 i et
- e i i s o i 4 =l
i i kit . I {5 i (i TE LU f Hoa
raH a i LRSS : . +
4 L M ] i1 W b
il Ik HHitr T
#7 #8 #9 #10 #11 #12
§ithy Ll h ik
e 2 ¥ i, 8
L e j: =) Al w’]\.' '
(il o A | SRR S
* T
] i
ur i
#13 #14 #15 #16 #17 #18
] g
b M i t
i] LrRd T 1»:‘-_# ;L ] o drH
Leay Sty Bt T it
ST s ) el
s T ' [ X N 1 AT
1 ne ¥ " i)
e It e g
it i A
#19 #20 #21 #22 #80

* The model is well trained — trainngd5
to fit rectilinear designs eval-ngd5
from NG45 —— rendomngds

0 100K 200K 300K 400K
Step
@ Testing on 100 synthesized Ariane-ASAP7
23 o - =

* The model-generated g WWV’\W eval-asap
placements improved 22 — 4 \owe——o randorm-asap?
outperforming the 8 21
random placements after o

i 20
100K policy updates : o o -~ -
Step

@ Adaptation

* Adapting from a pre- 26 —— scratch-asap?
trained model enabled g “ —— adapt-asap?
the model to converge 3 22— MRS, random-asap?
faster than training the £ 20
model on that design 15
from scratch 0 12.5€ 25K 35.5€ 50K

Step

Agite SoDA-
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Experimental Results

4. Runtime Analysis

Inference | Training
Time (h) | Time (h)

A-GCT 0.1 14
A-TILOS 0.1 10
A-OURS 0.1 14
Runtime
Resource | GPU___|___CPU
GCT 08 x A100s 20 x 96vCPUs

TILOS 08 x A100s 02 x 96vCPUs
OURS 01 x A5000 01 x 64vCPUs

Training Resources

22

« Our learning-based placer only needs a few minutes to obtain a

good placement (Inference Time)

« To generate a well-trained agent, we needs a few hours of

training

* It's worth noting that with the same amount of training time,

our placer consume fewer computing resources than other
placers

Agite SoDA-



Conclusions

Conclusions

Respects crucial human-like constraints

» Placement solution respects crucial human-like constraints
= Design hierarchy

» Peripheral bias

Generalization

= This approach has the potential to generalize a learned model to various designs with rectilinear macros and areas.

Reduce Training Resources

= We conducted on standard training machines.

» This can drive the research in RL-based placement towards efficiency and affordability.

23 AWSODA*



Demo page

https://anonymous.4open.science/r/rl4cad-AEOF



https://anonymous.4open.science/r/rl4cad-AE0F




Thank you!
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